JN — 82 Cre
)& B3

;i

) [}

PROGRESS REPORT ON THE INTERFACE BETWEEN ASTROPHYSICAL
DATASETS AND DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DAVI

Dr. S.S.Iyengar
Department of Computer Science
Louisiana State University

Baton Rouge, Louisiana 70803

January 1988

[NASA-CR-~182394) INTERFACE BETWEEN
ASTROPHYSICAL DATASETS AND DISTRIBUTED
DATABASE MANAGEMENT SYSTEMS (DAVID) Progress
Report (Louisiana State Univ.) 11 p
CSCL 05B G3/82

N88-157 31

Unclas
0118834



1. Introduction

This report gives a status report on the progress of the DAVID project being carried
out at Louisiana State University, Baton Rouge, LA. The objective of this project is to
implement an interface between Astrophysical datasets and DAVID. This report
discusses the design details and implementation specifics of the generalized interface
between the DAVID (Distributed Access View Integrated Database Management Sys-

tem) and Astrophysical datasets.

2. Project Details

Our thrust here is to interface the Astrophysical Datasets to the DAVID system. The
motivation is to allow the DAVID users to use the DAVID primitives to operate on the
astrophysical datasets. The main purpose of this interface is to simulate DAVID primi-
tives and apply them on flat files as if they were applied to a database. Given the syntac-
tical details, the application framework, interfacing specifications and a definition of the
GSQL data manipulation language for the DAVID system, here is the design and imple-
mentation specs of a reliable software system which can synthesize, compile and execute

queries on the astrophysical dataset system for data manipulation.

The details on the implementation are provided in the following sections.

2.1 An Overview of the Astrophysical Dataset Interface

As shown in the attached schematic (Figure 1) our software system includes code
for interpreting and executing the following generic DAVID routines : ff asgcluster,
ff_trfirst, ff trnext, ff trdelete, ff dasgcluster, ff_trupdate, ff trprevious and ff_trlast.
(working under 4.3 BSD UNIX on the VAX 11/780). The target framework for exploit-
ing the interface capability is as follows. On receiving a query from the DAVID host, the

query scheduler on determining that the query is on an external database would pass



-3-

control to the Resident GSQL primitive package( module 9 ) , the DAVID interface
handler. Upon determining that the query is for the Astrophysical dataset, the package
would invoke our system to execute the query on the flat file representing the Astrophysi-

cal dataset.

2.2 Files and data structures used in the Interface

Tapes containing the N30 data is read and transferred onto a disk file which has the

following format.

Bytes Description Format
4 Record number A4
1 Deleted flag Al
88 Record read from A88
tape as per
specifications

(see footnote*)

This would be the flat file on which the Interface would operate on. The record
number field as shown above indicates the record number relative to zero in the file. The
deleted flag field indicates that this record has been deleted from the file. A ’1’ in this

field indicates that this record has been marked deleted.

Structures like the CCA and TCA are used to store information to be passed to and
from the interface and DAVID. To be more specific the CCA structure holds the flat file
name and the flat file pointer. The TCA structure uses the buf ptr field to get the contents
of the tape and pass it on to DAVID and is also used to transfer information onto a
specific record of the flat file. Details of the CCA and TCA structures are as shown in

figures Al and A2.

* Documentation for Machine-Readable version of the Catalog of 5,268 Standard Stars, 1950.0
Based on the Normal System N30



2.3 Process

The following is a brief write-up on the primitives used in the interface. These rou-

tines have been coded and tested.

a)

b)

c)

d)

e)

g)

FLAT FILE Install : This procedure is called to install a FLAT FILE onto the

DAVID system. Here hand coding of the create-cluster is used.

FLAT FILE Drop Cluster : This procedure is used to delete a flat file containing
DAVID cluster data. The name of the flat file is got from the gsql row and the unix

unlink command is used to delete the file.

FLAT FILE Define Cluster : This procedure creates a FLAT FILE capable of hold-
ing data from a DAVID cluster. Here the C creat command is used to create the file

and the name is inserted in the arbi_file_name field of the gsql_row.

FLAT FILE Table Row Update : This procedure is used to simulate a DAVID
table-row update on a flat file. The address of the data buffer of the TCA is obtained
by making a call to a macro called DATA which has the following format :

dl = DATA (t1) The d1 is a pointer returned by DATA which points to the
buffer in TCA from where the data is taken and written over the current record in
the flat file.

FLAT FILE Asgncluster : This procedure is used to open a flat file so that is can be
read by DAVID. Here the file specified in the res name of CCA is opened. The
res_file ptr field in the CCA is assigned to the file pointer obtained by opening the
file.

FLAT FILE Table Row First : This procedure is used to simulate a DAVID table-
row first . The address of the data buffer of the TCA where the data read is stored is
obtained by making a call to a macro called DATA. The record read is the first
record of the flat file specified by the res_file ptr field of the CCA. |

FLAT FILE Table Row Last : This procedure is used to simulate a DAVID table-



h)

h)

-5-

row last. The address of the data buffer of the TCA where the data read is stored is
obtained by making a call to a macro called DATA. The record read is the last
record of the flat file specified by the res_file ptr field of the CCA.

FLAT FILE Table Row Previous : This procedure is used to simulate a DAVID
table-row previous. The address of the data buffer of the TCA where the data read is
stored is obtained by making a call to a macro called DATA. The record read is the
previous record of the flat file specified by the res_file_ptr field of the CCA . Here the

record number is used to locate the previous record in the flat file.

FLAT FILE Table Row Delete : This procedure is used to simulate a DAVID
table-row delete. The address of the data buffer of the TCA where the data read is
stored is obtained by making a call to a macro called DATA. The record is marked
deleted by setting ’1’ in the deleted flag field of the flat file.

FLAT FILE Dasgncluster : This procedure is used to close a flat file. The pointer to
the file is obtained from the res_file_ptr field of the CCA and then closed.

3. Future Directions

Presently a driver has been written to read from a tape containing the Normal Sys-

tem N30 catalogue data and create the flat file in the format specified above. This driver

would be enhanced to handle data from other tapes containing data in different formats

viz., AGK3 Star Catalogue. Certain consideration would be given to specify tape format

and content details to the driver.




DAVID

ENVIRONMENT

A 4

TCA/CCA
DATA
BUFFER

N ARBI FILE INTERFACE

GSQL
PRIMITIVES

UTILITIES

GENERIC
DAVID
ROUTINES

T~

—

ENCODER
L T F 4 \J!
SERIAL MONOGRAPHIC FITS
DATASETS DATASETS DATASETS
| T 1
r
USER USER USER

GENERALIZED INTERFACE SCENARIO FOR HETEROGENOQUS
ASTROPHYSICAL DATASETS



FIGURE Al and A2

/* type vca.h */

/* vca.h - vca */
#ifndef VCA_H
#define VCA H
#define DTLENGTH 20

#define CLUSTER_HDG LEN NODE_LEN + USER_LEN + FILE NAME LEN + \

NAME LEN + 3
typedef char TRANID[15};
typedef struct daddr {

unsigned
USHORT
} DADDR;

typedef struct constraint

page_no;
record _no;

{ char conidf12]; /* Unique id of the constraint KwW*/
char contype (4] ; /* GD, GK,... KW*/
char operations[3]; /* Insert/Update/Delete KW*/
char imm_proc(8]; /* Immediate Checking procedure name KW*/
char def prof[8]; /* Deferred checking procedure KW*/
STRING sdef; /* Constraint definition in string form KW*/
struct constraint *next; /* pointer to next constraint */

} CONSTRAINT;

typedef struct privilege

/* R: read, W: write, E: execute, D: delete */

{ char groupl4]; /* group id or * */
char member [4]; /* member id or * */
char type(4]; /* R/W/E/D */
struct privilege *next ;

} PRIVILEGE;

typedef struct bind info
POINTER destination:
USHORT 1length;
USHORT type:
struct bind_info
} BIND_INFO; /*KW*/

typedef struct field

{

*next;

/* Name of FIELD */

/* system assigned id of field */
/* Type of FIELD int, real,..*/
/* Length of FIELD */

/* Help text for the FIELD */

/* Pointer to bind table */

{ char name [NAME LEN];
USHORT id;
USHORT type;
USHORT length;
STRING help;
BIND_INFO *bind;
struct field *next;
} FIELD;
typedef struct argument

/* Name of argument */

/* Type of argument; int, real,..*/
/* Length ofargument */

/* Help text for the argument */

/* Argument value */

/* Recursive depth */
/* Child ID */

{ char name [NAME LEN];
char type [DTLENGTH] ;
USHORT length;

STRING help;
STRING value;
struct argument *next ;
} ARGUMENT;
typedef struct anode {
USHORT depth;
USHORT sib_id;
char *buf ptr;

/* buffer to store table row */



struct anode *sib_ptr;
struct anode *successor;
} ANODE; /* KW */

typedef struct sort_field(

FIELD *field; /* pointer to a field */
USHORT id; /* sort field index: 1,2,3 etc major to minor */
struct sort_field *next; /* link */

} SORT FIELD; /* KW */

typedef struct tca_link {
struct tca *tca_ptr; /* pointer to next TCA
ON DISK VERSION THIS SHOULD BE name
char [20] the TABLE NAME KW */

USHORT id; /* index of parent or child: 1,2,3 etc KW*/
struct tca_link *next;
} TCA_LINK;
typedef struct tca {
char name [NAME_LEN]; /* Name of table */
unsigned id; /* system assigned unique id of table SS*/
char type [DTLENGTH] ; /* Table type INDEX, CHAINED, BLOCKED, ..*/
char structure; /* i=index,$=Stable KW */
USHORT nfields; /* # of fields */
USHORT size_of row; /* size of row with pointers */
USHORT nchildren; /* Number of children KW */
USHORT nparents; /* Number of Ancestors KW */
USHORT nconstraints; /* Number of constraints */
USHORT nlptrs; /* number of logical (box 6) pointers */
USHORT npptrs; /* number of physical (box 7) pointers */
DADDR special row; /*addr of spec.row containing
g/tbase tables w/0 prnts KWw*/
DADDR cur_tsmap; /* disk pointer to current tsmap */
DADDR sav_tsmap; /* disk pointer to committed tsmap */
BOOL rdrn; /* reuse deleted record number flag */
USHORT nsort_fields; /* number of sort fields KW*/
char sort_method; /*’A’ (ascend) ‘D’ (desc) or blank (none) Kw*/
struct curptr {
unsigned page; /* current page index used in walking */
USHORT record; /* through table pages SS */
USHORT index;
}curptr;
STRING help; /* Help text for the table */
BIND_INFO *bind;
SORT_FIELD *sort_fields; /* Pointer to sort fields Kw*/
struct tca *ctca; /* points to tca of chain parent */
char *buf ptr; /* pointer to current table buffer */
ANODE *aux bufs; /* Ptr to auxilliary buffers */
FIELD *field; /* Field control areas */
TCA_LINK *children; /* Child table control areas KW */
TCA_LINK *parents; /* Ancestor table contrpol areas KW */
CONSTRAINT *constraints; /* pointer to table of constraints KWx/
struct tca *next; /* pointer to next tca */
} TCA;
typedef struct fca_link {
struct fca *fca_ptr; /* KW %/
struct fca_link *next;
} FCA_LINK;
typedef struct fca {
char name [NAME LEN]; /* Name of function */
char type{101]; /* Function type */

USHORT nargs; /* # of arguments */




-

unsigned nconsts; /* Number of constraints */

DADDR physfca; /* Future use */
STRING help; /* Help text for the function */
ARGUMENT *argument; /* Argument control areas */
CONSTRAINT *constr; /* Function constraints */
FCA_LINK *next ; /* Successor function control areas */
FCA_LINK *before; /* Ancestor function control areas */
} FCA;
typedef struct path {
USHORT altno; /* 0,1,2,.. 0 is the primary path */
struct path *next;
struct fnodes *fnode ptr:; /* KW */
} PATH;
typedef struct fnodes
{ char id{20]; /* Unique id for the function execution */
char name [20]; /* Function name */
char type[6]; /* Procedure/command/function */
char parent [20]; /* Parent tree. Used only for root */
char from(100]); /* node that the function came from */
char to[100]; /* destination node */
struct variables

/* This table is used only if the type
of the function is PROCEDURE. This table
basically contains the local variables
used within the procedure’s scope.

*/
{ char name [30] ;
char type (10];

unsigned length{3];
STRING value;

} variable;
STRING arglist; /* Argument list separated by comma */
struct names

{ STRING *name;
struct names *next;
} *clusters; /* Name of the clusters assigned */

USHORT priority; /* Priority assigned */
struct times /* Performance measures */
{ char arrived{15]); /* Time queued */
char start [15]; /* Time of execution start */
char stop(15]); /* Time of execution stop */
struct times *next;
} *time;
char status[2]; /* The status of execution */
unsigned size; /* Operation size */
PATH *next ; /* Next function to be executed */
PATH *before; /* Function to be executed before */
} FNODES;
typedef struct file control ({
char file_name (FILE_NAME LEN]:; /* name of file */
unsigned sfile ptr; /*.‘system file pointer */

struct file_control *next;
} FILE_CONTROL;

typedef struct ptr_alloc |
char *ptr; /* ptr to allocated area for assigned stuff */
struct ptr_alloc *next; /* pointer to next entry */

} PTR_ALLOC; /* KW */

typedef struct cca



{ char name {[NAME LEN]; /* Name of the cluster only-no node, */

unsigned id; /* System assigned unique id of cluster SS5*/
char type(20]; /* External, Actual, Tree,..*/
char created(20); /* Time of the cluster installation */
char updated[20]); /* Last time of the cluster update */
unsigned structure; /* int, corresponding to cluster

kind: QBASE, TBASE, DBASE, RBASE, etc */
DADDR sav_csmap; /* disk address of commited cluster storage map */
DADDR cur_csmap; /* disk address of current cluster storage map */
USHORT ntcas; /* number of tables */
STRING sdef; /* Text of defintion */
STRING help; /* Help text */
STRING space_def; /* Initial space definition used */
STRING res_name; /* resident data base name */ /*MM*/
STRING res_passl; /* password for arbi cluster *//*MM*/
STRING res_pass2; /* password for arbi cluster *//*MM*/
STRING res_pass3; /* password for arbi cluster *//*MM*/
STRING arbi_file name; /* File name of arbi format *//*MM*/
/* below are memory only fields */
FILE_CONTROL *file; /* pointer to file control */
USHORT res_file ptr; /* resident file pointer */
PRIVILEGE *privilege; /* Pointer to privilege table */
char access[3); /* Access allowed to this cluster */
TCA *tca ptr; /* data table control area KW */
struct cca *next; /* next cca in vca chain */
PTR_ALLOC *allocation; /* table of allocated pointers for assign KW */
PTR_ALLOC *next_allocation; /* ptr where next allocated ptr goes KW */
TCA *dollar:; /* pointer to S$table-~ TEMP only KW */
char constraint_flag; /*I (immediate) or D (deferred-default) */
char verify(3]:; /* contains "cca" to verify that this is

an allocated cca */
char *wca_ptr; /* pointer to window control */
} cca;

typedef struct process control

{ char pname [30]; /* Name of the process file */
char name {20); /* Name of the process */
STRING help; /* Help text for the process */
STRING sdef; /* String form of the process definition */
char created[20]; /* Time of the process installation */
char updated[20]); /* Last time of the process update */
char compile{20}; /* Name of the compile command file */
char link {20]; /* Name of the link command file */
char run{20]; /* Name of the run command file */
USHORT nfcas; /* Number of fcas */
FCA *fcas; /* Fcas table */
PRIVILEGE *privilege; /* Access privilege against groups

and their members of the user.
ex} {groupid, memberid, priv}

={ 1233jH, *, ED } would mean
that the members of the group
123 are allowed to execute or
delete the process. If a wild
card is used as the group id, then
it would have indicated all the
group in entire DAVID network*/

struct process_control *next;
} PROCESS CONTROL;

typedef struct vca {
char username [20]; /* Name of the user */
char groupid[20]; /* User’s group id */



¢har memberid(20); /* Member id within the group */

char viewid[15); /* Unique id for this view */

char autocommit_flag[3]; /* On/off */

char commit point[5]; /* Last commit point */

char rollback_point [5]; /* Later than commit_point */

char sleep_flag[5]; /* awake/temporary sleep/permanent sleep */
unsigned status; /* Completion status of operation */

char constraint_flag; /*I(immediate),D(deffered),O(off-def) KW */
struct synonym

{ STRING left;
STRING right;
struct synonym *next;
} *synonyms; /* Temporary synonyms. Effective for
this login only */

FILE CONTROL *files;
CCAa *clusters;
PROCESS_CONTROL *processes;
FNODES *trees;

} VCA;

#endif



